4.2 Article

spargel, the PGC-1α homologue, in models of Parkinson disease in Drosophila melanogaster

期刊

BMC NEUROSCIENCE
卷 16, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12868-015-0210-2

关键词

spargel; PGC-1 alpha; Neurodegeneration; Parkinson disease; Drosophila melanogaster

资金

  1. Department of Biology Teaching Assistantships
  2. Memorial University of Newfoundland
  3. Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant
  4. Parkinson Society Canada Pilot Project Regional Partnership Program
  5. Parkinson Society Quebec via Fond Saucier-Van Berkom-Parkinson Quebec and Parkinson Society Newfoundland Labrador

向作者/读者索取更多资源

Background: Parkinson disease (PD) is a progressive neurodegenerative disorder presenting with symptoms of resting tremor, bradykinesia, rigidity, postural instability and additional severe cognitive impairment over time. These symptoms arise from a decrease of available dopamine in the striatum of the brain resulting from the breakdown and death of dopaminergic (DA) neurons. A process implicated in the destruction of these neurons is mitochondrial breakdown and impairment. Upkeep and repair of mitochondria involves a number of complex and key components including Pink1, Parkin, and the PGC family of genes. PGC-1 alpha has been characterized as a regulator of mitochondria biogenesis, insulin receptor signalling and energy metabolism, mutation of this gene has been linked to early onset forms of PD. The mammalian PGC family consists of three partially redundant genes making the study of full or partial loss of function difficult. The sole Drosophila melanogaster homologue of this gene family, spargel (srl), has been shown to function in similar pathways of mitochondrial upkeep and biogenesis. Results: Directed expression of srl-RNAi in the D. melanogaster eye causes abnormal ommatidia and bristle formation while eye specific expression of srl-EY does not produce the minor rough eye phenotype associated with high temperature GMR-Gal4 expression. Ddc-Gal4 mediated tissue specific expression of srl transgene constructs in D. melanogaster DA neurons causes altered lifespan and climbing ability. Expression of a srl-RNAi causes an increase in mean lifespan but a decrease in overall loco-motor ability while induced expression of srl-EY causes a severe decrease in mean lifespan and a decrease in loco-motor ability. Conclusions: The reduced lifespan and climbing ability associated with a tissue specific expression of srl in DA neurons provides a new model of PD in D. melanogaster which may be used to identify novel therapeutic approaches to human disease treatment and prevention.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据