4.6 Article

Viscoelastic properties of interfacial lignosulfonate films and the effect of added electrolytes

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2020.125478

关键词

Lignosulfonate; Dilatational interfacial rheology; Interfacial shear rheology; Film stability; Emulsion stabilization; Ward and Todai

资金

  1. Norwegian Research Council
  2. Borregaard AS
  3. [269570]

向作者/读者索取更多资源

New evidence is presented, which confirmed interfacial gelling of lignosulfonates in presence of di- and trivalent cations. In this article, the viscoelastic properties of lignosulfonate films at the water-xylene interface were studied by dilatational interfacial rheology and interfacial shear rheology. Both techniques showed that increasing lignosulfonate concentration would first increase and then decrease the interfacial modulus. The same trend was observed for increasing salinity. The maximum interfacial modulus corresponded with lignosulfonate aggregation or precipitation and accounted for the best emulsion stability. The film strength increased progressively with the cation charge number. It was argued that multivalent cations provided intermolecular bridging between lignosulfonate molecules, which increased film strength and led to gelling. The decrease of interfacial film strength at high salinity was explained by two mechanisms: (1) For sodium cations, the polyelectrolyte contraction at high ionic strength yielded screening of the functional groups, which are deemed responsible for attractive interactions between lignosulfonate molecules or aggregates. (2) For calcium and aluminum cations, precipitation would reduce the effective bulk concentration, yielding a lower surface coverage. Modelling of the interfacial properties was conducted in addition, which showed that lignosulfonate adsorption was not diffusion-controlled and that lignosulfonate aggregation was affecting the adsorption process. In conclusion, our results revealed a more detailed picture of the mechanisms, which govern the interfacial behavior and properties of lignosulfonates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据