4.6 Article

Aerodynamic-Parameter Identification and Attitude Control of Quad-Rotor Model with CIFER and Adaptive LADRC

期刊

出版社

SPRINGER
DOI: 10.1186/s10033-020-00524-5

关键词

Quad-rotor; Qarameters identification; CIFER; Adaptive LADRC

资金

  1. National Natural Science Foundation of China [61501493]

向作者/读者索取更多资源

This research proposes an adaptive attitude control method based on LADRC and an aerodynamic-parameter estimation method to address the issues of weak environmental adaptability, poor anti-interference ability, and lack of robustness in quadrotor modeling and controller design. The approach increases tracking speed and accuracy, as well as anti-disturbance performance and robustness of the control system, showing practical significance for quadrotors with strong coupling and nonlinear characteristics.
Current research on quadrotor modeling mainly focuses on theoretical analysis methods and experimental methods, which have problems such as weak adaptability to the environment, high test costs, and long durations. Additionally, the PID controller, which is currently widely used in quadrotors, requires improvement in anti-interference. Therefore, the aforementioned research has considerable practical significance for the modeling and controller design of quadrotors with strong coupling and nonlinear characteristics. In the present research, an aerodynamic-parameter estimation method and an adaptive attitude control method based on the linear active disturbance rejection controller (LADRC) are designed separately. First, the motion model, dynamics model, and control allocation model of the quad-rotor are established according to the aerodynamic theory and Newton-Euler equations. Next, a more accurate attitude model of the quad-rotor is obtained by using a tool called CIFER to identify the aerodynamic parameters with large uncertainties in the frequency domain. Then, an adaptive attitude decoupling controller based on the LADRC is designed to solve the problem of the poor anti-interference ability of the quad-rotor and adjust the key control parameter b(0) automatically according to the change in the moment of inertia in real time. Finally, the proposed approach is verified on a semi-physical simulation platform, and it increases the tracking speed and accuracy of the controller, as well as the anti-disturbance performance and robustness of the control system. This paper proposes an effective aerodynamic-parameter identification method using CIFER and an adaptive attitude decoupling controller with a sufficient anti-interference ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据