4.8 Article

Coupling CsPbBr3 Quantum Dots with Covalent Triazine Frameworks for Visible-Light-Driven CO2 Reduction

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Chemistry, Applied

Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications

Jin Wang et al.

Summary: MHPs, as a class of new emerged semiconductors, exhibit excellent photoelectronic properties superior to most conventional semiconductor nanocrystals, attracting extensive attention and bringing new opportunities for the development of photocatalysis. Recent efforts have focused on designing and preparing MHP-based materials for various applications in photocatalysis, showing promise in efficient artificial photosynthesis.

JOURNAL OF ENERGY CHEMISTRY (2021)

Review Chemistry, Physical

Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance

Haowei Huang et al.

ACS ENERGY LETTERS (2020)

Article Nanoscience & Nanotechnology

Direct Z-Scheme 0D/2D Heterojunction of CsPbBr3 Quantum Dots/Bi2WO6 Nanosheets for Efficient Photocatalytic CO2 Reduction

Jichong Wang et al.

ACS APPLIED MATERIALS & INTERFACES (2020)

Article Chemistry, Multidisciplinary

Modulating Benzothiadiazole-Based Covalent Organic Frameworks via Halogenation for Enhanced Photocatalytic Water Splitting

Weiben Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Multidisciplinary Sciences

Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction

Feiyan Xu et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Multidisciplinary

Covalent organic framework photocatalysts: structures and applications

Han Wang et al.

CHEMICAL SOCIETY REVIEWS (2020)

Review Chemistry, Multidisciplinary

Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels

Xin Li et al.

CHEMICAL REVIEWS (2019)

Article Chemistry, Multidisciplinary

Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction

Li-Yuan Wu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

A Covalent Organic Framework Bearing Single Ni Sites as a Synergistic Photocatalyst for Selective Photoreduction of CO2 to CO

Wanfu Zhong et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

Hydrophobic Metal Halide Perovskites for Visible-Light Photoredox C-C Bond Cleavage and Dehydrogenation Catalysis

Zonghan Hong et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Physical

Enhanced CO2 photoreduction via tuning halides in perovskites

Shao-Hong Guo et al.

JOURNAL OF CATALYSIS (2019)

Article Chemistry, Multidisciplinary

Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes

Xiaolin Zhu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Materials Science, Multidisciplinary

All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications

Di Yang et al.

JOURNAL OF MATERIALS CHEMISTRY C (2019)

Review Chemistry, Multidisciplinary

CdS-Based photocatalysts

Lei Cheng et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

Pb-Activated Amine-Assisted Photocatalytic Hydrogen Evolution Reaction on Organic-Inorganic Perovskites

Lu Wang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Review Chemistry, Physical

Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

Quinten A. Akkerman et al.

NATURE MATERIALS (2018)

Article Chemistry, Multidisciplinary

Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3N4 for Enhanced Photocatalytic CO2 Reduction

Man Ou et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Enabling Visible-Light-Driven Selective CO2 Reduction by Doping Quantum Dots: Trapping Electrons and Suppressing H-2 Evolution

Jin Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands

Xiaofeng Cui et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Chemistry, Multidisciplinary

A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction

Yang-Fan Xu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Formation of Hierarchical In2S3-CdIn2S4 Heterostructured Nanotubes for Efficient and Stable Visible Light CO2 Reduction

Sibo Wang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution

Sophie Kuecken et al.

CHEMICAL COMMUNICATIONS (2017)

Article Multidisciplinary Sciences

Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production

Kelsey K. Sakimoto et al.

SCIENCE (2016)

Review Chemistry, Multidisciplinary

Polymeric Photocatalysts Based on Graphitic Carbon Nitride

Shaowen Cao et al.

ADVANCED MATERIALS (2015)

Article Chemistry, Multidisciplinary

A triazine-based covalent organic polymer for efficient CO2 adsorption

Ruth Gomes et al.

CHEMICAL COMMUNICATIONS (2015)

Review Chemistry, Multidisciplinary

Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes

James L. White et al.

CHEMICAL REVIEWS (2015)

Article Polymer Science

Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water

Jinhong Bi et al.

MACROMOLECULAR RAPID COMMUNICATIONS (2015)

Review Chemistry, Multidisciplinary

Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors

Severin N. Habisreutinger et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2013)

Article Chemistry, Multidisciplinary

Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity

Michael J. Bojdys et al.

ADVANCED MATERIALS (2010)

Article Chemistry, Multidisciplinary

Porous, covalent triazine-based frameworks prepared by ionothermal synthesis

Pierre Kuhn et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2008)