4.7 Article

Polynuclear aromatic anthracene biodegradation by psychrophilic Sphingomonas sp., cultivated with tween-80

期刊

CHEMOSPHERE
卷 263, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128115

关键词

Anthracene; Optimization; PAHs; Sphingomonas; Tween-80

资金

  1. Deanship of Scientific Research at King Saud University [RG1439-044]

向作者/读者索取更多资源

This study aimed to evaluate the biodegradation efficiency of anthracene by selected marine bacteria. Sphingomonas sp. KSU05 was identified as the most effective biodegrading strain, capable of surviving up to 500 mg/L of anthracene and rapidly degrading it within 96 hours. Optimization of culture conditions enhanced the anthracene biodegradation to 90.0% at pH 7.0, 0.3 mM tween-80 concentration, and 5.5% glucose concentration.
Anthracene is a low molecular weight polynuclear aromatic hydrocarbons (PAHs) being identified as a precedence toxic contaminant in the ecosystem. Thus, the present work was designed to evaluate anthracene biodegradation efficiency by selected marine bacteria. From the marine isolates, the most effective anthracene biodegrading strain was identified as Sphingomonas sp., KSU05. Time course batch growth results indicated that the isolate KSU05 was capable of surviving up to 500 mg/L of anthracene. The influence of various nutrient sources were screened for enhanced growth and pyrene degradation, based on results glucose and tween-80 were used for further optimization studies. Batch experimental analysis showed maximum biodegradation (70.5%) of anthracene (50 mg/L) with enhanced survival of Sphingomonas sp. KSU05 was observed at 96 h of cultivation. Box-Behnken design optimization results showed that the culture conditions enhanced the anthracene biodegradation (90.0%) at pH 7.0, 0.3 mM of tween-80 concentration, and 5.5% of glucose concentration. In addition, the isolate Sphingomonas sp. KSU05 was found to rapidly degrade anthracene within 96 h. The anthracene intermediates was analyzed using Gas chromatography mass spectrophotometer (GC-MS). Overall, this research shown that the Sphingomonas sp., cultivated with suggested optimum conditions could provide an effective prospective for the degradation of anthracene from contaminated environment. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据