4.7 Article

Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation

期刊

CHEMOSPHERE
卷 263, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128195

关键词

Brevundimonas diminuta MYS6; Copper; Response surface methodology; Bioremediation; FTIR; Helianthus annuus L. var. CO4

向作者/读者索取更多资源

In recent years, natural metal-tolerant microbial populations have replaced conventional expensive metal remediation approaches. This study focused on investigating the potential of a copper-tolerant plant growth-promoting rhizobacterial strain for Cu bioremediation, plant growth promotion, and Cu uptake in sunflowers. The results showed that the rhizobacteria were efficient in copper remediation, promoting plant growth, and enhancing copper uptake in the plants.
Natural occurring metal-tolerant microbial population have replaced conventional expensive metal remediation approach since the last few years. The present study focuses on investigating the potential of a copper-tolerant plant growth promoting rhizobacterial strain Brevundimonas diminuta MYS6 for Cu bioremediation, plant growth promotion and Cu uptake in Helianthus annuus L. Box-Behnken Design of response surface methodology optimized the influencing parameters such as pH, temperature and Cu concentration. At optimized conditions of pH (5), temperature (32.5 degrees C) and Cu concentration (250 mg/L), the rhizobacteria followed a sigmoid growth curve pattern with maximum Cu removal of 94.8% in the stationary phase of growth. Cu exposed Brevundimonas diminuta MYS6 produced increased EPS (18.6%), indicating their role in internal defence against Cu stress. The FTIR analysis suggested the role of carboxylic acids, alcohols and aliphatic amine groups in Cu bioremoval. Furthermore, the results of pot experiments conducted with Helianthus annuus L. var. CO4 and Brevundimonas diminuta MYS6 showed enhanced plant growth and Cu uptake. The rhizobacteria increased root and shoot length, fresh and dry plant biomass and leaf chlorophyll by 1.5, 1.7, 9.9, 15.8 and 2.1 fold. The plant biomass mediate enhanced Cu uptake in roots and shoots was found to be 2.98 and 4.1 folds higher when compared to non-inoculated treatment. Henceforth the results of the study evidence the rhizobacterial strain Brevundimonas diminuta MYS6 as an efficient bio-inoculant for copper remediation. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据