4.7 Article

Thermal flux, fugitive gas emission and geotechnical instability in a complex tailings legacy site

期刊

CHEMOSPHERE
卷 263, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128068

关键词

Magnesium; Dross; Hydration; Gas; Emission; Geotechnical; Instability

资金

  1. Rio Tinto

向作者/读者索取更多资源

Several years after decommissioning, a magnesium dross and mixed waste heap at a former industrial facility is still reactive, showing emissions of heat, VOCs, acetylene, cyanide, and ammonia. The waste heap consists of unreacted materials and hydrated secondary reaction products, with a CaO/MgO ratio serving as a useful proxy for temperature, pH, and gas concentrations. Measures such as capping and targeted venting are recommended to manage the environmental risk posed by the waste heap.
Several years after decommissioning, a magnesium dross and mixed waste heap at a former industrial facility is still reactive, as evidenced by the emission of heat, Volatile Organic Carbon (VOCs), acetylene (C2H2), cyanide (HCN) and ammonia (NH3) from deep, discordant, epigenetic fissures. To evaluate the longer-term stability of the waste heap material, four cores were collected to evaluate vertical variations in temperature, moisture, gas composition, geochemistry, and mineralogy. Temperature increased with depth and peaked at around 8 m, reaching in excess of 90 degrees C. The waste heap was a mixture of unreacted materials (mainly MgO and CaO) and a variety of hydrated secondary reaction products. Formation of the latter could account for the generation of heat and creation of the fissures via thermal and secondary mineral volumetric expansion. With a large inventory of unreacted CaO and MgO and substantial in situ water present, the waste heap will probably remain reactive in the foreseeable future. Importantly, the CaO/MgO ratio of solid materials in the waste heap provides a useful proxy for down hole temperature, pH, and fugitive gas concentrations. Fugitive gases emitted by the waste heap are related to the reaction of co-existing minerals in the heap based on an historical analysis of site waste disposal. These waste materials include calcium carbide (CaC2), magnesium nitride (Mg3N2) and calcium cyanamide (CaCN2). Capping to limit the ingress of additional meteoric water and targeted venting to facilitate cooling and the controlled release and dispersion of gases are recommended to manage the environmental risk. Crown Copyright (C) 2020 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据