4.7 Article

Cadmium level and soil type played a selective role in the endophytic bacterial community of hyperaccumulator Sedum alfredii Hance

期刊

CHEMOSPHERE
卷 263, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127986

关键词

Bacterial community structure; Cadmium; Phytoremediation; Soil type

资金

  1. National Natural Science Foundation of China [41771345]
  2. Fundamental Research Funds for the Central Universities [2020FZZX001-06]

向作者/读者索取更多资源

The study found that black soil is more suitable for the growth of Sedum alfredii, while paddy soil is more efficient for Cd phytoextraction. Cd treatment level and soil type both affect the structure of plant endophytic bacterial community, with black soil and paddy soil being more similar in the distribution and abundance of S. alfredii endophytic community.
Phytoremediation technology has been applied for heavy metal elimination for many years, however little research about the difference of remediation efficiency of hyperaccumulator in different soils was reported. Here, a pot experiment was conducted with a cadmium (Cd)/zinc hyperaccumulator Sedum alfredii Hance grown on different types of soils and the differences of its endophytic bacterial community were elucidated. The results showed that the biomass of S. alfredii grown on black soil under both low and high Cd treatment was much heavier than that grown on other soils, and Cd uptake and Cd accumulation of S. alfredii in paddy soil was the highest, suggesting that black soil was more suitable for S. alfredii growth while paddy soil was more efficient for Cd phytoextraction. Moreover, Cd treated level and soil type both affected the structure of plant endophytic bacterial community. The two shared genera in the four representative soils were Caulobacter and Acinetobacter under low Cd level, and Caulobacter and Lactobacillus under high Cd level. Cd treatment shifted the structure and abundance of plant endophytes in different types of soils, while black soil and paddy soil were more similar in the distribution and abundance of S. alfredii endophytic community. This study highlighted the understanding of response to Cd within S. alfredii endophytic community in different types of soils, which could be beneficial for enhanced phytoremediation efficiency and better S. alfredii cultivation. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据