4.7 Article

Relationship between the Pacific Decadal Oscillation (PDO) and persistent organic pollutants in sympatric Alaskan seabird (Uria aalge and U. lomvia) eggs between 1999 and 2010

期刊

CHEMOSPHERE
卷 262, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127520

关键词

Climate variability; Ecotoxicology; Behavioral ecology

资金

  1. NIST, agencies within the Department of Interior, and North Pacific Research Board (NPRB) [534, 822]
  2. National Institute of Environmental Health Sciences [P30 ES019776]

向作者/读者索取更多资源

The study examined the relationship between sea-surface temperature variability and the ecotoxicology of persistent organic pollutants (POPs) in eggs of two avian species with different trophic positions. It found that the Pacific Decadal Oscillation (PDO) predicted trophic position and levels of POPs in thick-billed murres but not in common murres. This suggests that facultative changes in foraging behavior, reflected in trophic position, can determine how POPs flow through and alter ecosystems under climate change.
Although climate change occurs alongside other anthropogenic ecosystem impacts, little is known about how sea-surface temperature variability influences the ecotoxicology of persistent organic pollutants (POPs). We analyzed POP contaminant levels, and stable isotopes delta N-15 and delta C-13 as measures of trophic position, in eggs collected from the Gulf of Alaska and Bering Sea between 1999 and 2010 from two similar avian species with different trophic positions: common murres (Uria aalge) and thick-billed murres (Uria lomvia). The ebb and flow of the Pacific Decadal Oscillation (PDO), a long-lived El Ninolike pattern of climate variability in the Pacific Ocean, predicted both trophic position and polychlorinated biphenyl (PCB) levels in thick-billed murres, but not in common murres. There was a similar pattern of association of the PDO with organochlorine pesticide levels in thick-billed murres, but not in common murres. The magnitude of association in thick-billed murres of PDO with the level of a specific PCB congener was a function of the number of chlorine groups on the PCB congener. Although this statistical analysis does not account for all factors contributing to climate variation, this contrast between the species suggests that facultative changes in foraging behavior, reflected in trophic position, can determine how POPs flow through and thereby alter ecosystems under climate change. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据