4.7 Article

A novel computational simulation approach to study biofilm significance in a packed-bed biooxidation reactor

期刊

CHEMOSPHERE
卷 262, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127680

关键词

Fe (II) biooxidation; Biofilm; Packed-bed reactor; CFD modeling; Mass transfer

资金

  1. Tarbiat Modares University [IG-39701]

向作者/读者索取更多资源

The study utilized a three-dimensional CFD model to investigate gas-liquid flow in a packed-bed biooxidation reactor, revealing the conversion rate and concentration distribution of Fe (II). The findings indicate that about one-third of Fe (II) conversion occurs in the upper part of the reactor, with lower Fe (II) concentration on the biofilm surface in the lower part.
Fe (II) biooxidation has recently gained significant interest. It plays a key role in a number of environmental and industrial processes such as bioleaching, acid mine drainage treatment, desulphurization of sour gases, and coal desulphurization. In this work, a three-dimensional CFD model for gas-liquid flow in a lab-scale packed-bed biooxidation reactor is used. The reactor is randomly packed with spherical particles, and the particles are covered with Leptospirillum ferrooxidans biofilm for Fe (II) biooxidation. A modified Jodrey-Tory algorithm is used to generate random packing with actual porosity of 0.42, and biofilm layer with constant thickness is considered over the particles. A simplified Eulerian-Eulerian model is used to obtain detailed flow field. The concentration profile in the reactor and the conversion of Fe (II) from the present simulations are obtained and validated using experimental data reported in the literature. The results of the study indicate that about three-quarters of the conversion occurs in the upper half of the reactor and Fe (II) concentration on the biofilm surface at the lower quarter of the reactor does not exceed 5 mM (The inlet concentration is 89.6 mM). The findings reveal that rate-limiting phenomena may vary in different parts of the reactor. The results obtained through the simulations represent advantages for the design and optimization of packed-bed biofilm reactors. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据