4.7 Article

Suppression of tar and char formation in supercritical water gasification of sewage sludge by additive addition

期刊

CHEMOSPHERE
卷 262, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128412

关键词

Char; Tar; Supercritical water gasification; Sewage sludge; Additives

资金

  1. Startup Foundation for Introducing Talent of NUIST [2020r097]
  2. National Science and Technology Major Project of the Ministry of Science and Technology of China [2017ZX07603-003-04]

向作者/读者索取更多资源

This study investigated the feasibility of inhibiting char and tar formation during supercritical water gasification of sewage sludge by additive addition. The results showed that different additives had varying effects on the formation of char and tar, with NaOH being the most effective inhibitor. Additionally, the addition of additives also had an impact on the hydrogen yield and gasification efficiency.
This study explored the feasibility of char and tar formation inhibition during supercritical water gasification of sewage sludge (SS) by additive addition. Experiments were conducted in autoclave with 5 wt% additives at 400 degrees C for 30 min. The non-additive gasification of SS resulted in a higher char yield (12.6%) and tar yield (16.4%). In contrast, the five additives reduced the char yield (3.4-11.2%), the inhibition of char yield by additives was in the order of NaOH > K2CO3 > H2O2 > acetic acid > NiCl2. The inhibition of tar formation was limited, tar yield were 13.3-18.8% with additives. Fourier-transform infrared spectroscopy was used to determine the functional groups of char/tar, and it was observed that the spectra of char were more similar to those of hydrochar obtained in a low-temperature experiment. Model compounds of potential precursors was also tested to study the mechanism of action of additives, the results reveal that additives have different effects on char/tar formation from various components, the inhibitory effects of additives on the yield of char from humus and tar from lignin were limited. Finally, the effects of additives on gasification were also studied. The addition of additives will have an impact on the hydrogen yield and gasification efficiency, which also needs to be considered when use additive to reduce the by-products yield. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据