4.7 Article

Reactive oxygen species production and inflammatory effects of ambient PM2.5-associated metals on human lung epithelial A549 cells one year-long study: The Delhi chapter

期刊

CHEMOSPHERE
卷 262, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128305

关键词

PM2.5; Cell-viability; Reactive oxygen species; Pro-inflammation; Carcinogenic metals

资金

  1. Department of Science and Technology, Govt. of India [SB/S3/CEE/0061\ 2013]
  2. Department of Civil Engineering, Indian Institute of Technology Delhi

向作者/读者索取更多资源

The study collected PM2.5 samples at the academic campus of Indian Institute of Technology, Delhi, India throughout 2017, and found that the presence of more trace metals in PM2.5 during winter and post-monsoon seasons had a significant impact on cell viability and ROS production.
The fine particulate matter (PM2.5) was collected at academic campus of Indian Institute of Technology, Delhi, India from January-December 2017. The PM2.5 samples were analysed for carcinogenic (Cd, Cr, As, Ni, and Pb) and non-carcinogenic (V, Cu, Zn, Fe) trace metals and their elicited effects on carcinoma epithelial cell line A549. Toxicological testing was done with ELISA kit. Same analyses were repeated for standard reference material (NIST-1648a) represents urban particulate matter. The student-t test and spearman correlation were used for data analysis. The seasonality in PM2.5 mass concentration and chemical composition showed effect on biological outcomes. The PM2.5 in post-monsoon and winter had higher amount of trace metals compared to mass collected in pre-monsoon and monsoon. Following the trend in PM mass concentration significantly (p < 0.5) lower cell viability was observed in post-monsoon and winter compared to other two seasons. NIST UPM 1648(a) samples always had higher cytotoxicity compared to ambient PM2.5 Delhi sample. Strong association of Chromium, Nickel, Cadmium, and Zinc was observed with cell viability and reactive oxygen species (ROS) production. In winter IL-6, IL-8 production were 2.8 and 3 times higher than values observed in post-monsoon and 53 and 9 times higher than control. In winter season trace metals As, Cu, Fe, in pre-monsoon Cr, Ni, As, Pb, V, and Fe, in post-monsoon Cd and V strongly correlated with ROS generation. ROS production in winter and pre-monsoon seasons found to be 2.6 and 1.3 times higher than extremely polluted post-monsoon season which had 2 to 3 times higher PM2.5 concentration compared to winter and pre-monsoon. The result clearly indicated that the presence of Fe in winter and pre-monsoon seasons catalysed the ROS production, probably OH radical caused high cytokines production which influenced the cell viability reduction, while in post-monsoon PM majorly composed of Pb, As, Fe and Cu and affected by photochemical smog formation showed significant association between ROS production with cell viability. Overall, in Delhi most toxic seasons for respiratory system are winter and post-monsoon and safest season is monsoon. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据