4.7 Article

Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater

期刊

CHEMOSPHERE
卷 262, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.128031

关键词

Adsorption; Biochar; Heavy metals; Kinetics; Isotherms; Thermodynamics

向作者/读者索取更多资源

In this study, ultrasonic assisted jujube seeds (UAJS) treated with sulphuric acid were experimented as adsorbents for removing Zn(II) and Pb(II) contaminated water. Results show that UAJS has higher adsorption capacity and is effective in treating industrial wastewater containing metal ions.
In this research, raw jujube seeds (RJS) treated with sulphuric acid followed by ultrasonic treatment such as ultrasonic assisted jujube seeds (UAJS) based biochar have been experimented as a viable material for treating Zn(II) and Pb(II) contaminated water. The adsorption ability of UAJS was compared with RJS through Langmuir adsorption capacity. The produced adsorbents were analysed by using BET surface area and thermogravimetric analyses. The removal kinetics, isotherms and thermodynamic behaviours of metal ions adsorption by UAJS were studied. Adsorption equilibrium data were analysed using various equilibrium models and Freundlich isotherm was appropriate towards explain the adsorption characteristics. UAJS Langmuir capacity of 221.1 mg/g and 119.8 mg/g were obtained for Zn(II) ions and Pb(II) ions, respectively. The results observed that UAJS holds higher capacity as compared with RJS. The pseudo-first order model was relevant to address adsorption behaviour. The mechanism on the separation of metal ions by UAJS was tested using diffusion and Boyd models. The mechanism outcomes observed that the internal and external diffusion controlled the separation process. The thermodynamic results explain the separation process was viable, exothermic and natural. The electroplating industrial wastewater was also treated with UAJS biochar to remove the metal ions such as copper, nickel, chromium and zinc ions from wastewater. Desorption process showed that 0.1 N HCl provide the good results as compared with other desorbing agents. The adsorbent property is not lost till the maximum of 5 adsorption/desorption cycles. The produced UAJS can be a better adsorbent for treating the heavy metal polluted wastewater. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据