4.7 Article

Application of UV/chlorine pretreatment for controlling ultrafiltration (UF) membrane fouling caused by different natural organic fractions

期刊

CHEMOSPHERE
卷 263, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127993

关键词

Ultrafiltration (UF); UV/chlorine; Membrane fouling; Natural organic matter (NOM); Modeling analysis

向作者/读者索取更多资源

The study shows that UV/chlorine pretreatment can effectively mitigate membrane fouling from different NOM fractions. Increasing chlorine dose can further improve the fouling reduction. The reduction of molecular weight of organic compounds and decomposition of unsaturated organic species are the main reasons for alleviating membrane fouling.
In this study, the effects of UV/chlorine pretreatment on ultrafiltration (UF) membrane fouling derived from different fractions of natural organic matter (NOM) were studied and compared. Three model organic compounds including humic acid (HA), sodium alginate (SA) and bovine serum albumin (BSA) were employed to represent different NOM fractions in natural surface water. The results suggest that membrane fouling induced from HA, SA and HA-SA-BSA mixture could be effectively mitigated by UV/chlorine pretreatment, which could be further improved by increasing the chlorine dose. Although UV irradiation alone severely aggravated BSA fouling, the addition of chlorine (0.0625 mM) to the pretreatment process could effectively avoid the fouling. The alleviation of membrane fouling is primarily ascribed to the reduction of molecular weight (MW) of organic compounds, and the decomposition of unsaturated organic species, thereby reducing the accumulation of organics on the membrane surface and pores. This is confirmed by the reduction of UV254 and fluorescent components in the feed solution and the increase of DOC in the permeate after UV/chlorine pretreatment. Membrane fouling during the filtration of untreated HA, SA, and HA-SA-BSA mixture was occupied by cake filtration and intermediate pore blocking, while UV/chlorine pretreatment led to the exacerbation of pore blocking at the initial filtration stage. The initial fouling mechanism of untreated BSA was mainly governed by complete blocking, which shifted to intermediate pore blocking after UV/chlorine pretreatment. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据