4.7 Article

Detoxification mechanisms of nickel sulfate in nematode Caenorhabditis elegans

期刊

CHEMOSPHERE
卷 260, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127627

关键词

Caenorhabditis elegans; Nickel; High-throughput screening platform; Detoxification; Phytochelatin; ABC-Transporter; Coelomocytes

向作者/读者索取更多资源

Nickel is the most prevailing metal allergen with the highest sensitization rate among the TOP 25 contact allergens and can affect about 15% of the human population. It is an essential trace metal in plants, animals, and humans. However, the environmental levels of nickel are considerably higher than what is needed for human life. Exposure to high levels of nickel can lead to skin allergies, lung fibrosis, and carcinogenesis. Few existing studies have closely examined the toxicity of nickel, let alone investigated the effective detoxification pathways. Here, we developed a high-throughput screening platform to comprehensively evaluate the nickel toxicity in wild-type C. elegans and explore the underlying detoxification mechanisms in transgenic nematodes. We demonstrated that nickel exerted multiple toxic effects on growth, brood size, feeding, and locomotion in C. elegans. Of which, brood size is the most sensitive endpoint. Nickel was found to first bind to phytochelatin (PC) after entering the worms' body and this PC-Ni complex was further transported by the ABC transporter, CeHMT-1, into the coelomocytes for further detoxification. Our study also demonstrated that the high-throughput screening platform is a promising system for evaluation and investigation of the ecological risks of heavy metals. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据