4.7 Article

Impact of rural residential coal combustion on air pollution in Shandong, China

期刊

CHEMOSPHERE
卷 260, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127517

关键词

Rural residential coal consumption; Emissions; Coal and stove type; Mitigation efficiency; Regional transport

资金

  1. Natural Sciences Foundation of China [51878012]
  2. National Key R&D Program of China [2018YFC0213206, 2017YFC0212202]
  3. Beijing Municipal Commission of Education
  4. Beijing Municipal Commission of Science and Technology

向作者/读者索取更多资源

Rural residential coal combustion (RRCC) for household heating is a potentially important source of air pollution. However, little research has been done on the environmental impacts of RRCC. This study therefore investigated the impacts of RRCC on air pollution based on detailed household heating data obtained from intensive face-to-face interviews in Shandong province, China. The total contributions and specific contributions of coal, stoves, and coal-stove combinations to air pollution were simulated using the WRF-CAMx-PSAT model. The RRCC for heating had a considerable impact on air pollution, contributing 36.1, 9.1, and 16.1% of atmospheric SO2, NOx, and PM2.5 in winter, respectively. Different coal -stove combinations had different impacts on air pollution and mitigation efficiencies. The combination of bituminous coal and advanced coal stoves was the dominant contributor to air pollution, comprising 60.3-68.8% of the total RRCC contribution to different air pollutants. Sensitivity analyses indicated that bituminous coal burnt in a traditional stove had the highest mitigation efficiency (0.67 mu g . m(-3)/ 1 0 kt) for atmospheric PM2.5 pollution, 4.1 times higher than that of anthracite briquette coal burnt in advanced coal stoves. Moreover, although RRCC is a near-surface emission source, it contributed considerably to regional pollution. Non-local RRCC emissions accounted for 21.8-74.6,15.5-72.3, and 35.3-79.9% of the total contribution to SO2, NOx, and PM2.5 in different cities, respectively. The findings of this study improve understanding on the environmental impacts of rural emissions and can provide scientific support for the formulation of effective air pollution mitigation strategies. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据