4.8 Article

Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material

期刊

CHEMISTRY OF MATERIALS
卷 33, 期 1, 页码 420-429

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.0c04281

关键词

-

资金

  1. European Research Council (ERC) [724424-No-LIMIT]
  2. Generalitat Valenciana via Prometeo [Prometeo/2018/098]
  3. EU (FEDER)
  4. MINECO [TEC201785912-C2-2]
  5. MICINN [CTQ201783781-P]

向作者/读者索取更多资源

Research shows that colloidal PbS NPLs may have an orthorhombic crystal structure instead of the rock-salt structure found in bulk materials. Calculations indicate that quantum confinement along the a crystallographic axis strengthens the indirect band gap, while confinement along the b and c axes favors a direct band gap.
PbS quantum dots and nanoplatelets (NPLs) are of enormous interest in the development of optoelectronic devices. However, some important aspects of their nature remain unclear. Recent studies have revealed that colloidal PbS NPLs may depart from the rock-salt crystal structure of bulk and form an orthorhombic (Pnma) modification instead. To gain insight into the implications of such a change over the optoelectronic properties, we have synthesized orthorhombic PbS NPLs and determined the lattice parameters by means of selected area electron diffraction measurements. We have then calculated the associated band structure using density functional theory with Perdew-Burke-Ernzerhof functional for solids and with the GW approximation, including spin-orbit interactions. An indirect band gap is found, which may explain the weak luminescence reported in experiments. We derive effective masses for conduction and valence bands and deduce that quantum confinement along the a crystallographic axis (short axis of the NPL) reinforces the indirect band gap but that along b and c axes favors a direct gap instead. Calculations for colloidal nanoplatelets of 1.8 nm thickness, carried out with k-p theory, show that excitonic effects are strong, with binding energies of about 150 meV.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据