4.5 Article

Benzyl Butyl Phthalate Induced Early lncRNA H19 Regulation in C3H10T1/2 Stem Cell Line

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 34, 期 1, 页码 54-62

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrestox.0c00129

关键词

-

资金

  1. Texas A&M Health Science Center School of Pharmacy

向作者/读者索取更多资源

Exposure to BBP may lead to metabolic dysregulation by altering key epigenetic regulators such as lncRNA H19 and its target microRNAs at an earlier stage, which further regulates insulin signaling.
Exposure to endocrine-disrupting chemicals used in plastic manufacturing may contribute to the current obesity and diabetes epidemic. Our previous study demonstrated that benzyl butyl phthalate (BBP) induced adipogenesis in the C3H10T1/2 stem cell line. Here we investigated if BBP deregulated long noncoding RNA H19 and its downstream pathway and whether BBP plays a role in the insulin signaling pathway during adipocyte diiferentiation. Cells treated with an 8 day BBP regimen showed that H19 expression was decreased at day 2 with 50 mu M BBP exposure (p < 0.05). However, no significant changes were observed from day 4 to day 8. Expression of miRNA-103/107, H19 regulated miRNAs, was upregulated at day 2 (p < 0.05) but not from day 4 to day 8. Similarly, expression of the let-7 family members (a, b, c, d, f, and g) was also significantly increased at day 2 (p < 0.05 or p < 0.01), except for let-7e. Both let-7 and miRNA103/107 are targets of H19 and play roles in insulin signaling. Insulin receptor substrate (IRS)-1, one of the key insulin signal transduction regulators, was significantly downregulated from day 2 to day 8 (p < 0.05). Gene expression of insulin receptor (IR) and IRS-2 were not altered by BBP exposure. The ratio of IRS1/IRS2 was significantly decreased from day 2 to day 8. On day 4, phospho-Akt protein expression was significantly decreased (p < 0.05). In conclusion, BBP exposure may lead to metabolic dysregulation by altering vital epigenetic regulators such as lncRNA H19 and its target microRNAs at an earlier stage, which further regulates insulin signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据