4.6 Article

Experimental investigation of the instantaneous flow structure in circulating fluidized bed: Phase characterization and validation

期刊

CHEMICAL ENGINEERING SCIENCE
卷 228, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2020.115946

关键词

Clusters; Optical fiber probe; Circulating fluidized bed; Particle properties; Instantaneous flow structure

向作者/读者索取更多资源

Circulating fluidized beds (CFBs) have been widely used as industrial reactors and the performances rely on the gas-particle contact. In a CFB, particles tend to form dense clusters, sheltering particles from the gas flow. However, in the literature, cluster dimensions and fractions vary up to one order of magnitude, hindering the understanding of CFBs. Recently, it has been found out that different phases were considered as clusters and this circumstance results in the severe variations of cluster properties. In this work, instantaneous solids holdup in a CFB was measured using an optical fiber probe. Then, crest clusters, coalesced particles, trough clusters and dispersed particles were identified in probe signals with the help of images. After that, phases were characterized discriminatively, and phase properties further were validated quantitatively using a high-speed camera. Finally, phases formed by FCC catalysts and glass beads were compared to explore the aggregation mechanism. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据