4.7 Article

Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels

期刊

CHEMICAL ENGINEERING JOURNAL
卷 402, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126276

关键词

Xerogels; Gas hydrates; Confinement effects; Porous structure; Surface chemistry

资金

  1. MINECO [MAT2016-80285-p, CTQ2017-87820-R]
  2. Principado de Asturias-FICYT-FEDER [PCTI-Asturias IDI/2018/ 000118]
  3. CONACyT, Mexico [330625]

向作者/读者索取更多资源

A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel approach and microwave heating. These xerogels are hydrophilic in nature and possess designed meso/macrocavities in the pore size range 5-55 nm. Carbon xerogels (CGs) have been synthesized from their organic counterparts after a carbonization treatment at high temperature. Interestingly, the carbonization process does not alter/modify substantially the porous network of the parent xerogels, while developing new micropores. Under water-supplying conditions, the two types of xerogels exhibit a large improvement in the methane adsorption capacity compared to the pure physisorption process taking place in dry conditions (up to 200% improvement), and associated with a significant hysteresis loop. These excellent values must be associated with the promoting effect of these xerogels in the water-to-hydrate conversion process. The comparison of OGs and CGs as a host structure anticipates that surface chemistry, total pore volume and pore size are critical parameters defining the extent and yield of the methane hydrate formation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据