4.7 Article

Design considerations for photocatalytic structured packed bed reactors

期刊

CHEMICAL ENGINEERING JOURNAL
卷 403, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126355

关键词

Photocatalysis; Reactor engineering; Light model; Structured reactors

资金

  1. fundamental research postdoctoral fellowship of Research Foundation - Flanders [39715]

向作者/读者索取更多资源

Translucent photocatalytic reactor structures have an impact on absorption efficiency and mass transfer limitations, with smaller base elements leading to increased surface area for potential catalyst load but also higher energy loss due to more light scattering boundaries. Different base structure sizes influence energy absorption and catalytic activity, with varying results for 1 mm, 2 mm, and 3 mm diameter spheres in the study. The study proposes a design strategy for cross-current illuminated photocatalytic packed bed reactors based on the model and principles discussed.
Translucent photocatalytic reactor structures are interesting for the design of small and large scale photocatalytic reactors. Altering the base element size of the structure impacts the packing parameters. Decreasing the base element size increases the available surface area which increases the potential catalyst load per volume. However, a smaller base element increases the number of light scattering boundaries, resulting in a higher energy loss. This work elaborates on the influence of the base structure on absorption efficiency and mass transfer limitations. The varied parameters are the base structure size, light intensity and catalyst load. The base structure used in this work is a borosilicate glass sphere with a diameter of 1 mm, 2 mm or 3 mm. To assess the absorption efficiency, a two flux light model was validated and used. It was shown that, for the same catalyst load, 1 mm beads absorb less energy than 2 and 3 mm beads. Furthermore, for equal rates of energy absorption, the spheres with a diameter of 1 and 2 mm behave equally while the 3 mm spheres show a lower bed activity. This is partly attributed to mass transport resistances towards the catalytic surface and light distribution. Using the model and the principles in this study, a design strategy is proposed for cross-current illuminated photocatalytic packed bed reactors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据