4.7 Article

Degradation of hydroxychloroquine by electrochemical advanced oxidation processes

期刊

CHEMICAL ENGINEERING JOURNAL
卷 402, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126279

关键词

Hydroxychloroquine; Electrochemical oxidation; Boron doped diamond; Hydroxyl radicals; UV irradiation; Specific energy consumption

向作者/读者索取更多资源

In this work, the degradation of hydroxychloroquine (HCQ) drug in aqueous solution by electrochemical advanced oxidation processes including electrochemical oxidation (EO) using boron doped diamond (BDD) and its combination with UV irradiation (photo-assisted electrochemical oxidation, PEO) and sonication (sono-assisted electrochemical oxidation, SEO) was investigated. EO using BDD anode achieved the complete depletion of HCQ from aqueous solutions in regardless of HCQ concentration, current density, and initial pH value. The decay of HCQ was more rapid than total organic carbon (TOC) indicating that the degradation of HCQ by EO using BDD anode involves successive steps leading to the formation of organic intermediates that end to mineralize. Furthermore, the results demonstrated the release chloride (Cl-) ions at the first stages of HCQ degradation. In addition, the organic nitrogen was converted mainly into NO3- and NH4+ and small amounts of volatile nitrogen species (NH3 and NOx). Chromatography analysis confirmed the formation of 7-chloro-4-quinolinamine (CQLA), oxamic and oxalic acids as intermediates of HCQ degradation by EO using BDD anode. The combination of EO with UV irradiation or sonication enhances the kinetics and the efficacy of HCQ oxidation. PEO requires the lowest energy consumption (EC) of 63 kWh/m(3) showing its cost-effectiveness. PEO has the potential to be an excellent alternative method for the treatment of wastewaters contaminated with HCQ drug and its derivatives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据