4.7 Article

Simple and scalable fabrication of hairy ZnO@ZnS core@shell Cu cables for continuous sunlight-driven photocatalytic water remediation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 401, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126164

关键词

Photocatalysis; ZnO-based photocatalysts; Sunlight; Reactor design; Photocatalyst synthesis

资金

  1. Metrohm foundation
  2. EMPAPOSTDOCS-II program
  3. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [754364]

向作者/读者索取更多资源

Over the last few decades, the application of photocatalysis for mineralizing persistent organic pollutants and other new emerging contaminants has gained increasing research and industry attention. However, the integration of catalyst fabrication and reactor design has not yet been realized for photocatalytic water decontamination applications. Herein, we present, for the first time, a facile, scalable, and eco-friendly strategy for the direct synthesis and integration of hairy ZnO@ZnS core@shell Cu cables in a continuous flow tubular-type reactor. The hairy ZnO@ZnS core@shell Cu cables exhibited (i) excellent photocatalytic performance (photocatalytic degradation > 99%, mineralization > 99%) for continuous water decontamination of both single(methylene blue) and multi-pollutants (methylene blue, p-nitrophenol, and rhodamine B) under artificial UV-filtered sunlight irradiation; (ii) a large surface area (90.1 m(2) g(-1)) and a large number of active sites owing to the hairy architecture; (iii) enhanced light absorption in the visible region due to the ZnO@ZnS core@shell heterostructure, which promotes the separation of photogenerated carriers; (iv) improved light trapping capability due to the hairy architecture; (v) high photostability with minimal photocorrosion (< 2% after 180 h of continuous irradiation); and (vi) excellent robustness. The recyclability and potential for direct re-fabrication of a fresh photocatalyst were also successfully confirmed. Thus, hairy ZnO@ZnS core@shell Cu cables were demonstrated to be a reliable and promising immobilized photocatalysts for the efficient mineralization of persistent organic pollutants and for the total/partial oxidation of other emerging pollutants in a continuous flow tubular-type reactor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据