4.7 Article

Effect of surface area and physical-chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution

期刊

CHEMICAL ENGINEERING JOURNAL
卷 402, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126155

关键词

Adsorption; Graphene; Graphene oxide; Graphite; Metronidazole; Trimethoprim

资金

  1. Consejo Nacional de Ciencia y Tecnologia, CONACyT, Mexico [CB-2012-02-182779, INFR-2012-01-188381]

向作者/读者索取更多资源

The adsorption of metronidazole (MNZ) and trimethoprim (TMP) antibiotics from water on nanomaterials synthesized from graphene oxide and graphite, was examined thoroughly. The effect of the physicochemical properties and surface area onto the adsorption capacity of the nanomaterials was studied in detail. The nanocarbon materials used were graphene oxide (GO), and GO reduced in inert medium (rGO) or ammonia (N-rGO), and four high surface area graphites (HSAG100, HSAG300, HSAG400, HSAG500). The nanomaterials characterization was performed by transmission and scanning electron microscopy, N-2 physisorption, TG-profiles and X-ray diffraction. The increasing order of the nanomaterial adsorption capacity toward MNZ was: HSAG100 < HSAG300 < N-rGO < HSAG400 < HSAG500 < GO < rGO and toward TMP was: HSAG100 < N-rGO approximate to HSAG300 < HSAG400 < HSAG500 approximate to rGO < GO; and except for GO, the adsorption capacity of the nanomaterials increased almost linearly with the surface area. At T = 25 degrees C, the maximum mass adsorbed of MNZ and TMP on GO were 190 and 218 mg/g, at pH 7 and pH 10, respectively. The adsorption of TMP and MNZ on GO corroborated the presence of different adsorption mechanisms dependent on antibiotic speciation and pH. The adsorption of both antibiotics on the materials based on graphite and reduced graphene oxide was predominantly due to pi-pi dispersive interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据