4.4 Review

Novel Pet-Degrading Enzymes: Structure-Function from a Computational Perspective

期刊

CHEMBIOCHEM
卷 22, 期 12, 页码 2032-2050

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.202000841

关键词

PETase; MHETase; molecular dynamics; molecular docking; protein engineering

向作者/读者索取更多资源

Efforts have been dedicated to elucidating the structure and features of PETase and MHETase enzymes, optimizing them for industrial applications. The versatility of enzymes secreted by I. sakaiensis suggests potential applications in PET debris disposal, making it a prolific research field to prioritize efforts in.
The bacterium strain Ideonella sakaiensis 201-F6 is able to hydrolyze low-crystallinity PET films at 30 degrees C due to two enzymes named PETase and MHETase. Since its discovery, many efforts have been dedicated to elucidating the structure and features of those two enzymes, and various authors have highlighted the necessity to optimize both the substrate binding site and the global structure in order to enhance the stability and catalytic activity of these PET biocatalysts so as to make them more suitable for industrial applications. In this review, the strategies adopted by different research groups to investigate the structure and functionality of both PETase and MHETase in depth are described, emphasizing the advantages provided by the use of computational methods to complement and drive experiments. Subsequently, the modifications implemented with protein engineering are discussed. The versatility of the enzymes secreted by I. sakaiensis enables the prediction that they will find several applications in the disposal of PET debris, encouraging a prioritization of efforts in this prolific research field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据