4.7 Article

Hydrophobicity and surface free energy to assess spent coffee grounds as soil amendment. Relationships with soil quality

期刊

CATENA
卷 196, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.catena.2020.104826

关键词

Soil hydrophobicity; Surface free energy; Organic amendments; Waste management; Organic raw material

资金

  1. Spanish Ministry of Economy and Competitiveness [AGL2014-53895-R]
  2. European Regional Development Fund (FEDER)
  3. PAIDI [RNM-127, FQM-363]
  4. Universidad de Jaen
  5. MINECO
  6. Junta de Andalucia
  7. FEDER

向作者/读者索取更多资源

This study evaluated the effects of spent coffee grounds (SCG) on the hydrophobicity of Mediterranean agricultural soils. It found that SCG increased soil hydrophobicity and was related to soil quality variables. The increase in hydrophobicity was associated with an improvement in soil physical properties.
The aim of this work was to evaluate the effects of spent coffee grounds (SCG), a highly hydrophobic raw material, on the hydrophobicity of two Mediterranean agricultural soils. Physical, chemical, mineralogical and biological soil properties, most of them used to evaluate soil quality, were studied and related to the main hydrophobicity parameters. The in vitro assay was performed with two SCG doses (2.5 and 10%), two soils and two incubation times (30 and 60 days). Hydrophobicity was determined by the water drop penetration time test (WDPT), the contact angle (CA) with H2O, formamide and diiodomethane, and the surface free energy components (SFE) calculated using the Van Oss model. The addition of SCG increased the WDPT, CA and SFE, being the latter which was related to a greater number of soil quality variables. Hydrophobicity was related to lower humus quality index (HQI), and a higher proportion of labile organic matter, as shown by Infrared and UV-vis spectroscopy. An increase in hydrophobicity was related to an improvement of soil physical quality: a high aggregate stability index, saturated hydraulic conductivity, porosity (total and macro), water retention, and a less bulk density. The most critical effect related to the increase in hydrophobicity was the significant decrease in the available water content. The SEM images showed a greater occlusion and stabilization mechanism of the SCG particles incorporated in Vega soil, probably due to its higher content of smectite and carbonates. The appearance of fungal biomineralizations of calcium carbonate is associated with SCG addition and could be considered as an interesting and little studied process of inorganic carbon fixation and secuestration. These results showed that hydrophobicity can afford relevant information that can help to asses soil quality status after an amendment with SCG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据