4.4 Article

High-Resolution Cone-Beam Computed Tomography is a Fast and Promising Technique to Quantify Bone Microstructure and Mechanics of the Distal Radius

期刊

CALCIFIED TISSUE INTERNATIONAL
卷 108, 期 3, 页码 314-323

出版社

SPRINGER
DOI: 10.1007/s00223-020-00773-5

关键词

CBCT; HR-pQCT; Bone parameters

资金

  1. FWO travel grant [V438418N]
  2. KU Leuven Internal Funding [C24/16/027]
  3. Swiss National Supercomputing Centre [891]

向作者/读者索取更多资源

This study demonstrates that CBCT is comparable to HR-pQCT in quantifying bone microstructural and mechanical parameters, with higher accuracy in predicting mechanical parameters of trabecular bone. CBCT shows promising potential as a high-resolution clinical scanning technique due to its fast scanning time and good accuracy.
Obtaining high-resolution scans of bones and joints for clinical applications is challenging. HR-pQCT is considered the best technology to acquire high-resolution images of the peripheral skeleton in vivo, but a breakthrough for widespread clinical applications is still lacking. Recently, we showed on trapezia that CBCT is a promising alternative providing a larger FOV at a shorter scanning time. The goals of this study were to evaluate the accuracy of CBCT in quantifying trabecular bone microstructural and predicted mechanical parameters of the distal radius, the most often investigated skeletal site with HR-pQCT, and to compare it with HR-pQCT. Nineteen radii were scanned with four scanners: (1) HR-pQCT (XtremeCT, Scanco Medical AG, @ (voxel size) 82 mu m), (2) HR-pQCT (XtremeCT-II, Scanco, @60.7 mu m), (3) CBCT (NewTom 5G, Cefla, @75 mu m) reconstructed and segmented using in-house developed software and (4) microCT (VivaCT40, Scanco, @19 mu m-gold standard). The following parameters were evaluated: predicted stiffness, strength, bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), separation (Tb.Sp) and number (Tb.N). The overall accuracy of CBCT with in-house optimized algorithms in quantifying bone microstructural parameters was comparable (R-2 = 0.79) to XtremeCT (R-2 = 0.76) and slightly worse than XtremeCT-II (R-2 = 0.86) which were both processed with the standard manufacturer's technique. CBCT had higher accuracy for BV/TV and Tb.Th but lower for Tb.Sp and Tb.N compared to XtremeCT. Regarding the mechanical parameters, all scanners had high accuracy (R-2 >= 0.96). While HR-pQCT is optimized for research, the fast scanning time and good accuracy renders CBCT a promising technique for high-resolution clinical scanning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据