4.6 Article

Investigation and characteristic analysis of a high-position rockslide avalanche in Fangshan District, Beijing, China

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10064-020-02098-x

关键词

Rockslide; Debris avalanche; High-position; Discrete element method; Erosion model

资金

  1. National Key R&D Program of China [2018YFC1505404]
  2. National Natural Science Foundation of China [41731287]
  3. Beijing Natural Science Foundation [8194062]
  4. Geological Disaster Detailed Investigation Project of China Geological Survey [DD20190637]

向作者/读者索取更多资源

In August 2018, a high-position rockslide avalanche occurred in Da'anshan village, Fangshan district, Beijing, China, causing no casualties due to timely warning detection. The displaced material traveled a horizontal distance of about 260 m with a vertical drop of about 176 m and finally accumulated with a volume of about 24,000 m(3). This study provides a methodological reference for future simulation analysis of similar events.
At 8:30 a.m., on August 11, 2018, a high-position rockslide avalanche was reported in Da'anshan village, Fangshan district, Beijing, China. The landslide destroyed the road below and did not cause any casualties due to the timely detection of warning signs. The displaced landslide material traveled a horizontal distance of about 260 m with a vertical drop of about 176 m and stopped at 613.6 m asl. According to videos and survey data, the Da'anshan rockslide initiated at a high position and transformed into a pipeline-type debris avalanche along the gully to the east. It scraped the surface layer of the strongly weathered rock formation and also transformed into a diffuse-type debris flow along the slope surface. Finally, it accumulated at the bottom of the river valley and presented a typical disaster mode of rapid runout. Based on this, the Archard erosion model was embedded in the Engineering Discrete Element Method (EDEM) to perform back analysis and simulate the three-stage kinematic processes of sliding, shear-shoveling, and flow accumulation to quantify the scraping volume and position. After initiation at a high-level position, the rockslide moved downward along the valley for approximately 10 s with a maximum velocity of 26.1 m/s. The final volume of the accumulation obtained from the simulation was similar to 24,000 m(3), which is close to the total volume obtained from the field investigations. This study provides a methodological reference for future simulation analysis of high-position rockslide avalanches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据