4.7 Article

ADeditome provides the genomic landscape of A-to-I RNA editing in Alzheimer's disease

期刊

BRIEFINGS IN BIOINFORMATICS
卷 22, 期 5, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbaa384

关键词

A-to-I RNA editing; Alzheimer's disease; protein recoding; alternative splicing; miRNA regulation

资金

  1. National Institutes of Health [R01GM123037, U01AR069395-01A1, R01CA241930]
  2. University of Texas Health Science Center at Houston

向作者/读者索取更多资源

A-to-I RNA editing plays a crucial role in the pathogenesis of Alzheimer's disease (AD) and the establishment of the ADeditome database provides valuable insights for identifying therapeutic target genes. Through functional annotation of 1676 363 editing sites in 1524 samples, key editing events influencing AD progression were identified.
A-to-I RNA editing, contributing to nearly 90% of all editing events in human, has been reported to involve in the pathogenesis of Alzheimer's disease (AD) due to its roles in brain development and immune regulation, such as the deficient editing of GluA2 Q/R related to cell death and memory loss. Currently, there are urgent needs for the systematic annotations of A-to-I RNA editing events in AD. Here, we built ADeditome, the annotation database of A-to-I RNA editing in AD available at https://ccsm.uth.edu/ADeditome, aiming to provide a resource and reference for functional annotation of A-to-I RNA editing in AD to identify therapeutically targetable genes in an individual. We detected 1676 363 editing sites in 1524 samples across nine brain regions from ROSMAP, MayoRNAseq and MSBB. For these editing events, we performed multiple functional annotations including identification of specific and disease stage associated editing events and the influence of editing events on gene expression, protein recoding, alternative splicing and miRNA regulation for all the genes, especially for AD-related genes in order to explore the pathology of AD. Combing all the analysis results, we found 108 010 and 26 168 editing events which may promote or inhibit AD progression, respectively. We also found 5582 brain region-specific editing events with potentially dual roles in AD across different brain regions. ADeditome will be a unique resource for AD and drug research communities to identify therapeutically targetable editing events. Significance: ADeditome is the first comprehensive resource of the functional genomics of individual A-to-I RNA editing events in AD, which will be useful for many researchers in the fields of AD pathology, precision medicine, and therapeutic researches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据