4.4 Article

Globins in the marine annelid Platynereis dumerilii shed new light on hemoglobin evolution in bilaterians

期刊

BMC EVOLUTIONARY BIOLOGY
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12862-020-01714-4

关键词

Globin; Metazoan; Bilaterian; Annelid; Convergent evolution; Blood

资金

  1. LABEX WHO AM I? [ANR-11-LABX-0071]
  2. CNRS
  3. Universite de Paris
  4. ANR [ANR-12-BSV2-0021, ANR-16-CE91-0007]
  5. Agence Nationale de la Recherche (ANR) [ANR-16-CE91-0007, ANR-12-BSV2-0021] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

Background How vascular systems and their respiratory pigments evolved is still debated. While many animals present a vascular system, hemoglobin exists as a blood pigment only in a few groups (vertebrates, annelids, a few arthropod and mollusk species). Hemoglobins are formed of globin sub-units, belonging to multigene families, in various multimeric assemblages. It was so far unclear whether hemoglobin families from different bilaterian groups had a common origin. Results To unravel globin evolution in bilaterians, we studied the marine annelid Platynereis dumerilii, a species with a slow evolving genome. Platynereis exhibits a closed vascular system filled with extracellular hemoglobin. Platynereis genome and transcriptomes reveal a family of 19 globins, nine of which are predicted to be extracellular. Extracellular globins are produced by specialized cells lining the vessels of the segmental appendages of the worm, serving as gills, and thus likely participate in the assembly of a previously characterized annelid-specific giant hemoglobin. Extracellular globin mRNAs are absent in smaller juveniles, accumulate considerably in growing and more active worms and peak in swarming adults, as the need for O-2 culminates. Next, we conducted a metazoan-wide phylogenetic analysis of globins using data from complete genomes. We establish that five globin genes (stem globins) were present in the last common ancestor of bilaterians. Based on these results, we propose a new nomenclature of globins, with five clades. All five ancestral stem-globin clades are retained in some spiralians, while some clades disappeared early in deuterostome and ecdysozoan evolution. All known bilaterian blood globin families are grouped in a single clade (clade I) together with intracellular globins of bilaterians devoid of red blood. Conclusions We uncover a complex pre-blood evolution of globins, with an early gene radiation in ancestral bilaterians. Circulating hemoglobins in various bilaterian groups evolved convergently, presumably in correlation with animal size and activity. However, all hemoglobins derive from a clade I globin, or cytoglobin, probably involved in intracellular O-2 transit and regulation. The annelid Platynereis is remarkable in having a large family of extracellular blood globins, while retaining all clades of ancestral bilaterian globins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据