4.8 Article

Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization

期刊

BMC BIOLOGY
卷 18, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12915-020-00917-x

关键词

Bread wheat; Allopolyploidization; Evolution; Base composition; Subgenome divergence; DNA repair

类别

资金

  1. National Key Research and Development Program [2016YFD0100102-2]
  2. Agriculture Variety Improvement Project of Shandong Province [2019LZGC016]
  3. China Postdoctoral Science Foundation [2019 M652446]

向作者/读者索取更多资源

Background The speciation and fast global domestication of bread wheat have made a great impact on three subgenomes of bread wheat. DNA base composition is an essential genome feature, which follows the individual-strand base equality rule and [AT]-increase pattern at the genome, chromosome, and polymorphic site levels among thousands of species. Systematic analyses on base compositions of bread wheat and its wild progenitors could facilitate further understanding of the evolutionary pattern of genome/subgenome-wide base composition of allopolyploid species and its potential causes. Results Genome/subgenome-wide base-composition patterns were investigated by using the data of polymorphic site in 93 accessions from worldwide populations of bread wheat, its diploid and tetraploid progenitors, and their corresponding reference genome sequences. Individual-strand base equality rule and [AT]-increase pattern remain in recently formed hexaploid species bread wheat at the genome, subgenome, chromosome, and polymorphic site levels. However, D subgenome showed the fastest [AT]-increase across polymorphic site from Aegilops tauschii to bread wheat than that on A and B subgenomes from wild emmer to bread wheat. The fastest [AT]-increase could be detected almost all chromosome windows on D subgenome, suggesting different mechanisms between D and other two subgenomes. Interestingly, the [AT]-increase is mainly contributed by intergenic regions at non-selective sweeps, especially the fastest [AT]-increase of D subgenome. Further transition frequency and sequence context analysis indicated that three subgenomes shared same mutation type, but D subgenome owns the highest mutation rate on high-frequency mutation type. The highest mutation rate on D subgenome was further confirmed by using a bread-wheat-private SNP set. The exploration of loci/genes related to the [AT] value of D subgenome suggests the fastest [AT]-increase of D subgenome could be involved in DNA repair systems distributed on three subgenomes of bread wheat. Conclusions The highest mutation rate is detected on D subgenome of bread wheat during domestication after allopolyploidization, leading to the fastest [AT]-increase pattern of D subgenome. The phenomenon may come from the joint action of multiple repair systems inherited from its wild progenitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据