4.6 Article Proceedings Paper

Convex hulls in hamming space enable efficient search for similarity and clustering of genomic sequences

期刊

BMC BIOINFORMATICS
卷 21, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12859-020-03811-z

关键词

Population distance; Hamming; Clustering; Centrality

资金

  1. Centers for Disease Control and Prevention

向作者/读者索取更多资源

Background In molecular epidemiology, comparison of intra-host viral variants among infected persons is frequently used for tracing transmissions in human population and detecting viral infection outbreaks. Application of Ultra-Deep Sequencing (UDS) immensely increases the sensitivity of transmission detection but brings considerable computational challenges when comparing all pairs of sequences. We developed a new population comparison method based on convex hulls in hamming space. We applied this method to a large set of UDS samples obtained from unrelated cases infected with hepatitis C virus (HCV) and compared its performance with three previously published methods. Results The convex hull in hamming space is a data structure that provides information on: (1) average hamming distance within the set, (2) average hamming distance between two sets; (3) closeness centrality of each sequence; and (4) lower and upper bound of all the pairwise distances among the members of two sets. This filtering strategy rapidly and correctly removes 96.2% of all pairwise HCV sample comparisons, outperforming all previous methods. The convex hull distance (CHD) algorithm showed variable performance depending on sequence heterogeneity of the studied populations in real and simulated datasets, suggesting the possibility of using clustering methods to improve the performance. To address this issue, we developed a new clustering algorithm, k-hulls, that reduces heterogeneity of the convex hull. This efficient algorithm is an extension of the k-means algorithm and can be used with any type of categorical data. It is 6.8-times more accurate than k-mode, a previously developed clustering algorithm for categorical data. Conclusions CHD is a fast and efficient filtering strategy for massively reducing the computational burden of pairwise comparison among large samples of sequences, and thus, aiding the calculation of transmission links among infected individuals using threshold-based methods. In addition, the convex hull efficiently obtains important summary metrics for intra-host viral populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据