4.8 Article

Hollow magnetic-fluorescent nanoparticles for dual-modality virus detection

期刊

BIOSENSORS & BIOELECTRONICS
卷 170, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2020.112680

关键词

Multicomponent nanoparticles; Fluorescence; Impedance; Dual-modality; Bio-separation; Virus diagnostics

资金

  1. Japan Society for the Promotion of Science (JSPS) [19F19064, 17F17359]
  2. Grants-in-Aid for Scientific Research [19F19064, 17F17359] Funding Source: KAKEN

向作者/读者索取更多资源

Combination of magnetic nanomaterials with multifunctionality is an emerging class of materials that exhibit tremendous potential in advanced applications. Synthesizing such novel nanocomposites without compromising magnetic behavior and introducing added functional properties is proven challenging. In this study, an optically active quantum dot (QD) (core) encapsulated inside iron oxide (hollow shell) is prepared as the first electrochemical/fluorescence dual-modality probe. Presence of magnetic layer on the surface enables excellent magnetic property and the encapsulating of QDs on the hollow shell structure maintains the fluorescence with minimal quenching effect, endowing for potential application with fluorescence modality readout. We successfully demonstrate dual-modality sensing utilizing of QD-encapsulated magnetic hollow sphere nanoparticles (QD@MHS NPs) with magnetic separation ability and highly integrated multimodal sensing for the detection of various viruses including hepatitis E virus (HEV), HEV-like particles (HEV-LPs), norovirus-like particles (NoVLPs), and norovirus (NoV) from clinical specimens. Most importantly, fecal samples of HEV-infected monkey are successfully diagnosed with sensitivity similar to gold standard real-time quantitative reverse transcriptionpolymerase chain reaction (RT-qPCR). This well-defined QD@MHS NPs-based nanoplatform intelligently integrates dual-modality sensing and magnetic bio-separation, which open a gateway to provide an efficient point of care testing for virus diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据