4.7 Article

Discovery of 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)-2-fluorophenoxy)-6-methoxyquinolin-7-yl)oxy)-N, N-diethylpiperidine-1-carboxamide as kinase inhibitor for the treatment of colorectal cancer

期刊

BIOORGANIC CHEMISTRY
卷 106, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2020.104511

关键词

Design; Synthesis; Thiazolidinone; Quinoline; Tyrosine kinase inhibitors; Colorectal cancer

资金

  1. National Natural Science Foundation of China [81960627]

向作者/读者索取更多资源

A novel series of 4,6,7-trisubstituted quinoline analogues containing thiazolidinones were designed and synthesized in this study. Compound 15i was identified as a potent multi-kinase inhibitor with significant antitumor activities against HT-29 cells. It induced apoptosis and cell cycle arrest in a dose- and time-dependent manner, while showing low toxicity to normal cells. Further structural modifications may lead to the development of more potent kinase inhibitors for cancer treatment.
In this study, a novel series of 4,6,7-trisubstituted quinoline analogues bearing thiazolidinones were designed and synthesized based on our previous study. Among them, the most potent compound 15i, 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yeureido)-2-fluorophenoxy)-6-methoxyquinolin-7-yl)oxy)-N,N-diethylpiperidine-1-carboxamide was identified as a multi-kinase inhibitor. The results of MTT assay revealed in vitro antitumor activities against HT-29 cells of compound 15i with an IC50 value of 0.19 mu M which was 14.5-fold more potent than that of Regorafenib. In the cellular context, significant antiproliferation, cytotoxicity and induction of apoptosis on HT-29 cells in a dose- and time-dependent manner were confirmed by IncuCyte live-cell imaging assays. Moreover, compound 15i strongly induced apoptosis by arresting cell cycle into the G2/M phase. No antiproliferation and cytotoxicity against human normal colorectal mucosa epithelial cell FHC was observed at 10.0 mu g/mL or lower concentrations which indicated that the toxicity to normal cells of compound 15i was much lower than that of Regorafenib. Based on the above findings, further structural modification will be conducted for the development of more potent kinase inhibitors as anticancer agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据