4.7 Article

Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery

期刊

BIOORGANIC CHEMISTRY
卷 105, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2020.104321

关键词

Artificial nucleic acid aptamer; SELEX; Drug conjugate; Internalization; Lung fibroblast

资金

  1. Japan Agency for Medical Research and Development, Japan [JP19ak0101102]
  2. Sumitomo Dainippon Pharma

向作者/读者索取更多资源

Lung fibroblasts play major roles in the lung repair/fibrosis process through synthesis and remodeling of extracellular matrix. Those aberrant activations and elevated proliferations are associated with several fibrotic lung diseases, such as idiopathic pulmonary fibrosis (IPF). Targeting fibroblasts is a promising approach for preventing aberrant remodeling of lung architecture and protect irreversible pulmonary fibrosis. In this study, we developed an aptamer that can target lung fibroblasts and explored its potential as a delivery vehicle of cytotoxic agents intracellularly. The aptamer was discovered from artificial nucleic acid libraries through cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). This indole-modified aptamer can bind to LL97A cells, a fibroblast cell line derived from IPF patients, with high affinity (K-d = 70 nM). It also showed affinity to other lung fibroblasts, while cross-reactivity to epithelial cells was minimal. An aptamer-monomethyl auristatin F (MMAF) conjugate was generated by hybridizing with complementary DNA linked to MMAF. The resulting aptamer-MMAF conjugate inhibited proliferation of fibroblasts but appeared non-toxic to non-targeted epithelial cells. Our results show that artificial nucleic acid aptamer may potentially be used for fibroblast specific therapy and diagnostic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据