4.7 Article

Uric acid aggravates myocardial ischemia-reperfusion injury via ROS/NLRP3 pyroptosis pathway

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 133, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2020.110990

关键词

Uric acid; Myocardial ischemia-reperfusion; Reactive oxygen species; NLRP3 inflammasome; Pyroptosis

资金

  1. Anhui Provincial Natural Science Foundation [1808085QH235]
  2. Youth Elites Support Plan in universities of Anhui Province [gxyq2019013]
  3. Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province [gxgwfx2019010]

向作者/读者索取更多资源

This study revealed that uric acid exacerbates MI/R injury by promoting ROS generation, while NLRP3 inflammasome inhibitors and ROS scavengers partially reverse this injury.
Background: The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation-mediated pyroptosis pathway has been linked to myocardial ischemia-reperfusion (MI/R) injury. This study explored whether uric acid (UA) aggravates MI/R injury through NLRP3 inflammasome-mediated pyroptosis. Methods: In vivo, a mouse MI/R model was established by ligating the left coronary artery, and a mouse hyperuricemia model was created by intraperitoneal injection of potassium oxonate (PO). Then, the myocardial infarction (MI) size; terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) immunofluorescence; and serum levels of lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), and UA, as well as the expression level of pyroptosis-related protein and caspase-3 in heart tissues, were measured. Separately, primary mouse cardiomyocytes were cultured in vitro to create a hypoxia/reoxygenation (H/R) model. We then compared cardiomyocytes viability, TUNEL immunofluorescence, and the levels of LDH, reactive oxygen species (ROS), and pyroptosis-related protein and caspase-3 in cardiomyocytes. Results: In vivo, the MI area, levels of CK-MB and LDH, rate of cell death, and pyroptosis-related protein and the expression of caspase-3 were significantly higher in the MI/R group than in the sham group, and high UA levels worsened these changes. In vitro, cardiomyocytes viability was significantly downregulated, and the levels of ROS, LDH, pyroptosis-related protein, caspase-3, and the rate of cardiomyocyte death were significantly higher in the H/R + UA group compared with the HR group. Administration of an NLRP3 inflammasome inhibitor and ROS scavenger reversed these effects. Conclusion: UA aggravates MI/R-induced activation of the NLRP3 inflammatory cascade and pyroptosis by promoting ROS generation, while inflammasome inhibitors and ROS scavengers partly reverse the injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据