4.5 Article

The action of ciliary muscle contraction on accommodation of the lens explored with a 3D model

期刊

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
卷 20, 期 3, 页码 879-894

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-021-01417-9

关键词

Ciliary muscle; Lens deformation; Accommodation; Finite-element model; Ocular biomechanics

资金

  1. Ace Vision Group, Silver Lake, OH

向作者/读者索取更多资源

The ciliary muscle consists of three sections with different orientations that contract to deform and translate the lens during accommodation. A finite element model was created to predict the actions of the ciliary muscle sections in lens displacement. The model was calibrated and validated using experimental data to study the mechanical actions of each section.
The eye's accommodative mechanism changes optical power for near vision. In accommodation, ciliary muscle excursion relieves lens tension, allowing it to return to its more convex shape. Lens deformation alters its refractive properties, but the mechanics of ciliary muscle actions are difficult to intuit due to the complex architecture of the tissues involved. The muscle itself comprises three sections of dissimilarly oriented cells. These cells contract, transmitting forces through the zonule fibers and extralenticular structures. This study aims to create a finite element model (FEM) to predict how the action of the ciliary muscle sections leads to lens displacement. The FEM incorporates initialization of the disaccommodated lens state and ciliary muscle contraction, with three muscle sections capable of independent activation, to drive accommodative movement. Model inputs were calibrated to replicate experimentally measured disaccommodated lens and accommodated ciliary muscle shape changes. Additional imaging studies were used to validate model predictions of accommodative lens deformation. Models were analyzed to quantify mechanical actions of ciliary muscle sections in lens deformation and position modulation. Analyses revealed that ciliary muscle sections act synergistically: the circular section contributes most to increasing lens thickness, while longitudinal and radial sections can oppose this action. Conversely, longitudinal and radial sections act to translate the lens anteriorly with opposition from the circular section. This FEM demonstrates the complex interplay of the three sections of ciliary muscle in deforming and translating the lens during accommodation, providing a useful framework for future investigations of accommodative dysfunction that occurs with age in presbyopia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据