4.8 Article

Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/ chemodynamic therapy/ immunotherapy

期刊

BIOMATERIALS
卷 268, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2020.120545

关键词

MoS2-CuO heterostructures; Metastatic tumor inhibition; Immune system activation; Synergistic therapy

资金

  1. National Natural Science Foundation of China
  2. NSFC [51720105015, 51672269, 51929201, 51922097, 51772124, 51872282]
  3. Science and Technology Cooperation Project between Chinese and Australian Governments [2017YFE0132300]
  4. Key Research Program of Frontier Sciences, CAS [YZDY-SSW-JSC018]
  5. Youth Innovation Promotion Association of CAS [2017273]

向作者/读者索取更多资源

The MoS2-CuO nanoplatform designed in this study integrates multimodal imaging and therapeutic functions for cancer treatment. It is capable of enhancing antitumor efficacy through a combination of photothermal therapy, chemodynamic therapy, and immunotherapy, while also generating strong antitumor immune responses for effectively eliminating primary and metastatic tumors.
Rational design of biocompatible nanoplatforms simultaneously realizing multimodal imaging and therapeutic functions is meaningful to cancer treatment. Herein, the MoS2-CuO heteronanocomposites are designed by integrating semiconductor CuO and flower-like MoS2 via a two-step hydrothermal method. After loading bovine serum albumin (BSA) and immunoadjuvant imiquimod (R837), the obtained MoS2-CuO@BSA/R837 (MCBR) nanoplatforms realize the excellent computed tomography/infrared thermal/magnetic resonance multi-mode bioimaging as well as significantly enhanced antitumor efficacy of synergetic photothermal therapy (PTT)/chemodynamic therapy (CDT)/immunotherapy. In this nanoplatform, the semiconductor CuO exhibits peroxidase-like activity, which can react with over-expressed H2O2 in tumor microenvironment (TME) to generate (OH)-O-center dot for CDT via Haber-Weiss and Fenton-like reactions. And this process can be further accelerated by the generated heat of MoS2 under 808 nm laser irradiation. More importantly, the obtained multifunctional MCBR nanoplatforms under near-infrared (NIR) irradiation would destroy tumor cells to generate tumor associated antigens (TAAs), which combine with R837 as an adjuvant to trigger strong antitumor immune responses for effectively eliminating primary tumors and metastatic tumors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据