4.8 Article

Development of highly functional bioengineered human liver with perfusable vasculature

期刊

BIOMATERIALS
卷 265, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2020.120417

关键词

Bioengineering; Liver tissue engineering; Re-endothelialization; Aptamer; Artificial organ

资金

  1. Rural Development Administration [PJ01100201]
  2. National Research Foundation of Korea, Republic of Korea [2018R1A2B3008483]
  3. National Research Foundation of Korea [2018R1A2B3008483] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Liver tissue engineering with vascular reconstruction using decellularized liver scaffolds showed enhanced liver-specific functions and perfusable vessel networks, providing a promising strategy for liver failure treatment.
Liver tissue engineering offers a promising strategy for liver failure patients. Since transplantation rejection resulting in vessel thrombosis is regarded as a major hurdle, vascular reconstruction is one of indispensable requirements of whole organ engineering. Here we demonstrated a novel strategy for reconstruction of a vascularized bioengineered human liver (VBHL) using decellularized liver scaffolds in an efficient manner. First we achieved fully functional endothelial coverage of scaffolds by adopting the anti-CD31 aptamer as a potent coating agent for re-endothelialization. Through an ex vivo human blood perfusion that recapitulates the blood coagulation response in humans, we demonstrated significantly reduced platelet aggregation in anti-CD31 aptamer coated scaffolds. We then produced VBHL constructs using liver parenchymal cells and non parenchymal cells, properly organized into liver-like structures with an aligned vasculature. Interestingly, VBHL constructs displayed prominently enhanced long-term liver-specific functions that are affected by vascular functionality. The VBHL constructs formed perfusable vessel networks in vivo as evidenced by the direct vascular connection between the VBHL constructs and the renal circulation. Furthermore, heterotopic transplantation of VBHL constructs supported liver functions in a rat model of liver fibrosis. Overall, we proposed a new strategy to generate transplantable bioengineered livers characterized by highly functional vascular reconstruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据