4.8 Article

Adaptive architecture and mechanoresponse of epithelial cells on a torus

期刊

BIOMATERIALS
卷 265, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2020.120420

关键词

Gaussian curvature; Mechanobiology; Cell morphology; Nucleus; Vimentin; Lamin A

资金

  1. Institute for Basic Science [IBS-R020-D1]

向作者/读者索取更多资源

This study investigated the mechanobiological characteristics of individual cells on a torus structure with different Gaussian curvatures. Cells on the torus surface exhibited topological sensing ability and demonstrated significant adjustments in nuclear area and position depending on the local Gaussian curvature. Spatial heterogeneity of intermediate filament proteins revealed local Gaussian curvature as a key factor of cellular adaptation on curved surfaces.
Curvature is a geometric feature widely observed in the epithelia and critical to the performance of fundamental biological functions. Understanding curvature-related biophysical phenomena remains challenging partly owing to the difficulty of quantitatively tuning and measuring curvatures of interfacing individual cells. In this study, we prepared confluent wild-type Madin-Darby canine kidney cells on a torus structure presenting positive, zero, and negative Gaussian curvatures with a tubule diameter of 2-7 cells and quantified the mechanobiological characteristics of individual cells. Cells on the torus surface exhibited topological sensing ability both as an individual cell and collective cell organization. Both cell bodies and nuclei, adapted on the torus, exhibited local Gaussian curvature-dependent preferential orientation. The cells on the torus demonstrated significant adjustment in the nuclear area and exhibited asymmetric nuclear position depending on the local Gaussian curvature. Moreover, cells on top of the torus, where local Gaussian curvature is near zero, exhibited more sensitive morphological adaptations than the nuclei depending on the Gaussian curvature gradient. Furthermore, the spatial heterogeneity of intermediate filament proteins related to mechanoresponsive expression of the cell body and nucleus, vimentin, keratin and lamin A, revealed local Gaussian curvature as a key factor of cellular adaptation on curved surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据