4.7 Article

Au nanoparticles supported on piranha etched halloysite nanotubes for highly efficient heterogeneous catalysis

期刊

APPLIED SURFACE SCIENCE
卷 546, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2021.149100

关键词

Halloysites nanotubes; Hybrid material; Gold nanoparticles; 4-nitrophenol reduction; Furfural oxidation

资金

  1. Department of Chemical Sciences of Padova University [11NExuS_BIRD2019-UNIPD]
  2. Chinese Scholarship Council
  3. Erasmus internship program

向作者/读者索取更多资源

This article introduces a composite system based on gold nanoparticles supported on etched HNTs, with excellent catalytic activity and stability. It can efficiently catalyze the reduction of 4-nitrophenol and the oxidation of furfural, with high turnover frequency.
Halloysite nanotubes (HNTs) can be conveniently used as scaffolds to load catalytic units, to enable efficient heterogeneous catalytic processes. In this contribution, we report a facile strategy to prepare a composite system based on Au nanoparticles (NPs) supported on piranha-etched HNTs. The resulting nano-system was characterized by FTIR, XPS and nitrogen physisorption to highlight its surface properties and porosity. Compared to the non-treated reference HNTs, the increase of hydroxyl groups on the etched HNTs walls allowed to graft a double amount of 3-aminopropyl silane (5.7 wt% vs. 2.8 wt%) and, consequently, to load 15.5 wt% more gold NPs. On the other hand, the interaction of the amino groups with Au NPs stabilizes positively charged NPs, thus leading to excellent catalytic activity and stability. The resulting nano-hybrid can catalyse the reduction of 4-nitrophenol to 4-aminophenol with a kinetic rate constant 53% higher than the reference reaction. In addition, it can be reused for 8 times without significant loss of activity. The supported system also demonstrates its potential in the oxidation of a sugar-derived molecule, i.e., furfural, which is converted into furoic acid with turnover frequency (TOF) 25% higher than the reference.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据