4.5 Article

Effects of muscle sympathetic burst size and burst pattern on time-to-peak sympathetic transduction

期刊

APPLIED PHYSIOLOGY NUTRITION AND METABOLISM
卷 46, 期 7, 页码 790-796

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/apnm-2020-0721

关键词

microneurography; sympathetic nervous system; blood pressure; muscle sympathetic nerve activity; neurovascular; transduction

资金

  1. Natural Science and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation
  3. Ontario Ministry of Research, Innovation and Science
  4. American Physiological Society
  5. Ontario Ministry of Economic Development, Job Creation and Trade
  6. National Council for Scientific and Technological Development
  7. Ontario Graduate Scholarship
  8. Canadian Institute of Health Research (CIHR)
  9. Charles Best Canada Graduate Scholarship
  10. NSERC Alexander Graham Bell Canada Graduate Scholarship
  11. NSERC Michael Smith Foreign Study Supplement

向作者/读者索取更多资源

The study evaluated the impact of resting muscle sympathetic nerve activity (MSNA) burst size and firing pattern on time-to-peak sympathetic transduction in young healthy men and women. Results showed larger MSNA burst areas led to faster peak responses, independent of the pattern of sympathetic firing.
The current study evaluated the influence of resting muscle sympathetic nerve activity (MSNA) burst size and firing pattern on time-to-peak sympathetic transduction in 36 young healthy men and women. Participants underwent a 5-10 min resting baseline with beat-to-beat measures of heart rate, mean arterial pressure (MAP), and MSNA (microneurography). Cardiac output and total vascular conductance were calculated using the Modelflow algorithm. Sympathetic transduction was quantified using the burst-triggered signal averaging technique to examine the changes in MAP, cardiac output, and total vascular conductance for 15 cardiac cycles after each MSNA burst or non-burst. A stepwise increase in the peak MAP (i.e., sympathetic transduction) was observed throughout all quartiles of normalized MSNA burst area (quartile 1 (Q1): 1.76 +/- 1.3 mm Hg; Q2: 2.1 +/- 1.3 mm Hg; Q3: 2.6 +/- 1.4 mm Hg; Q4: 3.5 +/- 1.4 mm Hg; P < 0.01). The largest quartile of normalized MSNA burst area demonstrated faster time-to-peak MAP responses (5.7 +/- 2.5 s) than both Q1 (10.1 +/- 3.9 s, P < 0.01) and Q2 (9.3 +/- 4.1 s, P < 0.01), as well as, faster time-to-peak cardiac output and time-to-nadir total vascular conductance compared with Q1 and Q2 (All P < 0.05). Larger clusters of sympathetic bursts (i.e., triplets and >= quadruplets) did not have increased time-to-peak transduction compared with singlets and doublet bursts across all MSNA quartiles. These results highlight intraindividual variability in the time-course of sympathetic transduction and reveal an intrinsic property of larger sympathetic bursts to increase time-to-peak sympathetic transduction in humans. Novelty: Muscle sympathetic burst size can modulate time-to-peak sympathetic transduction in young healthy men and women. These observations appear independent of the pattern of sympathetic firing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据