4.7 Article

Antibiofilm peptides as a promising strategy: comparative research

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 105, 期 4, 页码 1647-1656

出版社

SPRINGER
DOI: 10.1007/s00253-021-11103-6

关键词

Biofilm; Antibiofilm peptides; Antibiofilm agents; Antimicrobial peptides

资金

  1. National Natural Science Foundation of China [81970928]
  2. Guangdong Basic and Applied Basic Research Foundation [2019A1515110847]
  3. Fundamental Research Funds for the Central Universities [20ykpy74]

向作者/读者索取更多资源

Biofilms are responsible for most infections, making it crucial to find effective antibiofilm agents with low cytotoxicity. Among 51 peptides classified into 14 categories, 14 representative peptides showed antibiofilm activity against both bacteria and fungi, with 4 peptides having lower MBIC values than their MICs.
Biofilms lead to approximately 65% of infections, and these infections are hard to treat. Thus, it is crucial to identify effective antibiofilm agents with low cytotoxicity. Peptides with antibiofilm activity have been regarded as promising solutions, and peptides with MBICs (minimal biofilm inhibitory concentrations) that are lower than their minimal inhibitory concentration (MICs) (minimal inhibitory concentrations) are appealing. Therefore, we systematically summarized and classified previously reported peptides with antibiofilm activity. A total of 51 peptides with antibiofilm activity were classified into 14 categories. The MICs and MBICs of these fourteen representative peptides, one selected from each category, were compared against the Gram-positive bacterium Streptococcus mutans, the Gram-negative bacterium Pseudomonas aeruginosa, and the fungus Candida albicans. Six representative peptides (C5-pleurocidin, C6-Pac-525, C9-protegrin-1, C11-TetraF2W-RR, C13-WLBU2, and C14-melittin) showed antibiofilm activity against both bacteria and fungi, and among these 6 representative peptides, 4 peptides (C9-protegrin-1, C11-TetraF2W-RR, C13-WLBU2, and C14-melittin) could prevent biofilm formation with lower MBIC values than their MICs. CLSM (confocal laser scanning microscopy), SEM (scanning electron microscopy), and TEM (transmission electron microscopy) were further used to observe the morphologies of the biofilms after treatment with the peptides. Among the above 4 peptides, WLBU2 and melittin sparsely scattered the biofilms without destroying the bacteria. In conclusion, the currently reported peptides with antibiofilm activity are limited in number, but peptides with lower MBICs than MICs exist as promising candidates against biofilm-related infections and need further study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据