4.7 Article

Advanced comminution modelling: Part 2-Mills

期刊

APPLIED MATHEMATICAL MODELLING
卷 88, 期 -, 页码 307-348

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2020.06.048

关键词

Comminution; DEM; SPH; Wear; Multiphase; Mill

向作者/读者索取更多资源

This second part paper explores rock breakage mechanisms, the life cycle of rocks in mills and the strong influence of end walls on charge motion within mills. We present recent advances in particle-based modelling of mills for comminution focused around wear and the effect of slurry and slurry phase grinding. Three mill scenarios are considered: 1. Media flow and the resulting wear evolution of the belly and end wall liners and the resulting change in mill performance for a full industrial scale dry ball mill (modelled using DEM) 2. Axial slurry transport and mixing in a wet overflow industrial scale ball mill (modelled using fully coupled DEM and SPH) 3. Effect of mill speed on slurry and solid charge motion and the resulting grinding of fine particles in a 1.8 m diameter wet Hardinge pilot mill (modelled using fully coupled DEM and SPH with advection-diffusion-population balance equations solved for the slurry size distribution for each SPH particle) These demonstrate the nature and level of fidelity that is now possible to include in particle-scale comminution models. They provide insights into the critical importance of curtain flows generated by the end walls of tumbling mills, on wear behaviour on liners, on the structure of slurry pools and mill discharge and on the adverse effect on grinding of increasing mill speed. Crown Copyright (C) 2020 Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据