4.7 Article

A network model for stemflow solute transport

期刊

APPLIED MATHEMATICAL MODELLING
卷 88, 期 -, 页码 266-282

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2020.06.047

关键词

Bark; Furrow; Leaching; Network; Stemflow

资金

  1. U.S. National Science Foundation [NSF-AGS-1644382, NSF-IOS-175489]
  2. JSPS KAKENHI [JP17KK0159]

向作者/读者索取更多资源

While the role of stemflow in directing and concentrating water and nutrients at the tree base is rarely in dispute, its mathematical representation remains a subject of inquiry and research. A network model that seeks to estimate stemflow solute concentration and leaching is proposed. The model accommodates the physico-chemical properties of individual furrows embedded within the tree bark and their interconnections. The within-furrow equations for water and solute transport that include leaching are first developed and integrated along a rough-bark network topology to describe solute concentration and fluxes out of the network. The model is parameterized using published data on stemflow, field measurements of bark geometry, and laboratory experiments on bark leaching for potassium, magnesium, and calcium. The parameterization is intended to impose plausibility constraints and not to test model predictions at a particular site, a single event, or an individual experiment. The outflow concentration is then analyzed as a function of the network complexity that includes asymmetry in the lengths or subpaths connecting network nodes. For a symmetric network, an effective 'channel-flow' analogy may be used to represent solute concentration at the outflow. However, as the asymmetry increases in subpath lengths, the efficiency of the bark network at moving solutes diminishes for the same rainfall input onto the stem. The network representation featured here is by no means offering a 'finality' to the stemflow mathematical representation. It must be viewed as an embryonic step that opens up the possibility of using modern advances in network theories to link rainfall properties to stemflow water and solute input from a variety of tree species with differing bark microrelief configurations into the soil. (c) 2020 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据