4.8 Article

Time series generative adversarial network controller for long-term smart generation control of microgrids

期刊

APPLIED ENERGY
卷 281, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.116069

关键词

Generative adversarial networks; Reinforcement learning; Economic dispatch; Smart generation control; Generation commands dispatch

资金

  1. Natural Science Foundation of Guangxi Province, China [AD19245001, 2020GXNSFBA159025]

向作者/读者索取更多资源

This paper proposes a long-term smart generation control framework with a single time-scale to replace the conventional combined generation control framework with two time-scales, and introduces a time series generative adversarial network controller. Numerical simulation results demonstrate that the proposed controller achieves higher control performance and smaller economic cost in the long-term.
The conventional combined generation control framework of microgrids, which contains two time-scales, i.e., the time slot of economic dispatch is set to 15 min; and the total time slot of smart generation control and generation command dispatch is set to 4 s, could lead to uncoordinated problems. To avoid uncoordinated problems, this paper proposes a long-term smart generation control framework with a single time-scale to replace the conventional combined generation control framework with two time-scales, and then proposes time series generative adversarial network controller for long-term smart generation control of microgrids. The proposed time series generative adversarial network controller contains reinforcement learning, generator deep neural networks, and discriminator deep neural networks. The generator deep neural networks generate predicted states from multiple historical states, multiple historical actions, and multiple long-term actions. The discriminator deep neural networks judge whether the data from the generator deep neural networks or real-life data. This paper compares the proposed controller with conventional optimization algorithms and control algorithms, which are applied for economic dispatch, smart generation control, and generation commands dispatch in microgrids. The numerical simulation results under Hainan Power Grid, IEEE 300-bus power system, and IEEE 1951-bus power system verify that the proposed time series generative adversarial network controller can simultaneously obtain higher control performance and smaller economic cost than conventional combined control algorithm and optimization algorithms in the long-term. Consequently, the uncoordinated problem of economic dispatch, smart generation control, and generation commands dispatch can be solved by the proposed approach with one single long-term time-scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据