4.8 Article

Data-driven framework for large-scale prediction of charging energy in electric vehicles

期刊

APPLIED ENERGY
卷 282, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.116175

关键词

Charging energy; Large-scale prediction; Machine learning; Electric vehicle

资金

  1. National Key Research and Development Program of China [2019YFB1600800]

向作者/读者索取更多资源

A novel data-driven framework for large-scale charging energy predictions has been developed in this study, accurately taking into account various factors and demonstrating superior accuracy and stability compared to existing prediction models. This framework can further be utilized for cloud-based battery diagnoses and large-scale forecasting of EV energy demands.
Large-scale and high-precision predictions of the charging energy required for electric vehicles (EVs) are essential to ensure the safety of EVs and provide reliable inputs for grid-load calculations. However, the complex and dynamic operating conditions of EVs make it challenging to accurately predict the charging energy under real-world conditions, especially for large-scale EV utilization. In this study, a novel data-driven framework for large-scale charging energy predictions is developed by individually controlling the strongly linear and weakly nonlinear contributions. The proposed framework concurrently addresses the overfitting of nonlinear networks using a low proportion of training data as well as the poorly descriptive ability of linear networks under complex environments. For each charging session, the charging energy predictions appropriately account for important factors such as the variations in the state of charge (SOC) of the battery, ambient temperatures, charging rates, and total driving distances. The results suggest that, compared with existing prediction models (such as the random forest, xgboost, and neural network), the proposed framework persists with evidently higher accuracy and stability over a wide range of the ratio between the number of EVs used for testing and training; its mean absolute percentage error (MAPE) is maintained at 2.5-3.8% when the ratio ranges from 0.1 to 1000. The proposed models can be further utilized for cloud-based battery diagnoses and large-scale forecasting of the energy demands of EVs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据