4.8 Article

Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage

期刊

APPLIED ENERGY
卷 280, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.115956

关键词

Thermal building mass; Energy storage; HVAC system; Demand response; Energy flexibility

资金

  1. National Science &Technology Pillar Program during the thirteenth Five-year Plan Period [2017YFB0903404]

向作者/读者索取更多资源

Heating, ventilation, and air conditioning (HVAC) systems, combined with the internal thermal mass of buildings, have been deemed to be promising means of providing demand response (DR) resources, particularly for buildings with active energy storage systems. DR resources, such as peak-load reduction potential, can provide grid-responsive support resulting in a high degree of grid involvement and high flexible electricity demand. In the DR field, the potential of HVAC load flexibility has been considered in buildings. In the future smart buildings, it is important to take advantage of demand-side resources to achieve real-time energy supply-demand balance sustainably. In this context, DR potential and characteristics of buildings play a pivotal role in DR programs. However, few studies have investigated the internal thermal mass's heat release and DR characteristics of buildings. Thus, a systematic experiment is conducted to study the DR potential and characteristics of internal thermal mass and active storage systems. The DR resources include the passive cooling storage from furniture, building envelope and an active water storage tank. Two DR control strategies, including pre-cooling and temperature resetting, are analyzed in this study. The experimental results show that the strategies are effective for short-term (0.5 h) and intermediate-term (2 h) DR programs. For a long-term DR program, active energy storage technology such as a water storage tank is required to satisfy the occupant's comfort requirements. Hence, we conclude that passive thermal mass and active storage systems should be simultaneously considered in practical DR programs for better DR implementation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据