4.8 Article

Combined styles of depressurization and electrical heating for methane hydrate production

期刊

APPLIED ENERGY
卷 282, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.116112

关键词

Depressurization; Electrical heating; Combined styles; Methane hydrates; Gas and water production; Energy efficiency

资金

  1. National Natural Science Foundation of China [51576202, 51736009, 51879254]
  2. National Key R&D Program of China [2016YFC0304002]
  3. Special Project for Marine Economy Development of Guangdong Province [GDME-2018D002]
  4. CAS Science and Technology Apparatus Development Program [YZ201619]

向作者/读者索取更多资源

The study found that initiating electrical heating before depressurization and performing soaking at a pressure below equilibrium can increase hydrate dissociation rate and improve energy efficiency. Additionally, not using electrical heating during depressurization can significantly reduce water production rate and increase energy efficiency. The results suggest that careful consideration of the timing and conditions of electrical heating can optimize hydrate dissociation and energy use in hydrate exploitation.
The combined styles of depressurization and electrical heating have an important influence on hydrate recovery and energy use in hydrate exploitation. However, the efficient combined styles of depressurization and electrical heating have not been achieved at present. In this work, six combined styles of depressurization and electrical heating were designed. In order to determine efficient combined styles, a depressurized vertical wellbore and a heated horizontal wellbore were used to model these combined styles and further to dissociate hydrate-bearing samples prepared by the excess-water method. The results showed that electrical heating should be started before depressurization. Specifically, considering hydrate saturation increase of 0.327-2.47% in the hydrate stability region, electrical heating was proposed to start at the onset of fresh hydrate formation. Subsequently, the soaking through electrical heating was performed at a pressure below the equilibrium pressure at the ambient temperature, which increased the averaged hydrate dissociation rate by 7.72%. A lower shut-in pressure for the soaking could enlarge the effective heating radius in samples to improve hydrate dissociation. During depressurization, no electrical heating reduced the averaged water production rate by 80.99% and increased energy efficiency by 18.06%. So electrical heating was proposed to stop in the temperature recovering stage, but whether it was used or not in the temperature reducing stage should depend on exploiting conditions, due to secondary hydrate formation and ice formation at a lower back pressure. This work may offer some reference on the arrangement of depressurization and electrical heating in future field tests for hydrate exploitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据