4.8 Article

A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries

期刊

APPLIED ENERGY
卷 282, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2020.116167

关键词

Lithium power battery; Remaining useful life prediction; Cycle life test optimization; Hybrid transfer learning; Transferable sample selection; Deep recurrent neural network

资金

  1. National Natural Science Foundation of China [51605014, 61803013, 61973011]
  2. Fundamental Research Funds for the Central Universities [YWF-20-BJ-J-517, ZG140S1993]
  3. National key Laboratory of Science and Technology on Reliability and Environmental Engineering [6142004200501]
  4. R&D projects in key areas of Guangdong Province [2018B010108005]
  5. Capital Science & Technology Leading Talent Program [Z191100006119029]

向作者/读者索取更多资源

The proposed method utilizes transfer-learning and prediction modeling to optimize test data selection and model training, improving long-term cycle life prediction accuracy for Li-ion batteries.
Long-term cycle life test in battery development is crucial for formulations selection but time-consuming and high-cost. To shorten cycle test with estimated lifespan, a prediction-based test optimization method is proposed for Li-ion batteries with different formulations. A hybrid transfer-learning method optimally selects historical test data and trained prediction model of other formulations to help construct models of the target batteries. It can improve prediction accuracy despite short-term test data containing insufficient global degradation information. Firstly, a four-step transferability measurement method automatically selects the most transferable sample from a historical database of other formulations, although their degradation laws exist individual differences and inconsistency. Four-types of transferability evaluation criteria including curve shape, long-term degradation rate, lifespan concentration, and distance between curves, are sequentially integrated to fit capacity curves characteristics and long-term prediction. Then, a prediction model using Long Short-time Memory Network is quickly initialized by transferring a shared part of the previous model of other formulations instead of random initialization. The shared model parameters are optimally and selectively transferred according to test temperature and test data amount for improving modeling effectiveness. The rest-part of the model is trained by the selected transferable-sample to learn degradation trend similar to the target battery for accurate prediction. Finally, actual data from a battery company verify the performance of the proposed method in terms of prediction and cost-saving. It achieves 89.18% average accuracy and 0.7 to 5.5 months saving under the condition of different formulations and test-stop threshold.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据